Polietilen (PE) Hakkında

  4' lerde sentetik kauçuk için Tüpras Yarımca Tesislerine ve ayrıca dış piyasaya verilmektedir.2 = CH2 (CH2 – CH2)n (Katalizör O2, ısı, basınç) Polietilen zincirindeki karbonlar trans seklinde düzenlenmiştir. Polietilen, bir çözücüde çözünüp, soğutulur ve kristallendirilirse, tek – kristal elde edilir. Polimer zincirindeki dallanmalar kristalliğin derecesini tayin eder. Dallanmanın az olduğu molekül yapılarda kristalinize genellikle fazladır. Polimer içindeki kristallik arttıkça sertlik artar, mekanik ve kimyasal özellikler iyileşir ve sıvı ile gazlara dayanıklılık artar. Erime indeksi molekül ağırlığıyla ters orantılıdır. YYPE’ lebin sertliği ve sağlamlığı daha fazla, erime akış indeksleri daha düşüktür.2 veya peroxide kullanılır.3 3

Polietilenler termoplastik ailesinin en eski polimerlerinden biri olup önceleri sadece alçak yoğunluklu üretilirken gelişim göstermiş ve yüksek yoğunluklu, lineer, orta yoğunluklu olmak üzere üç yeni polietilen türü aileye eklenmiştir.

Polietilenler günümüzde oldukça yaygın olarak kullanılmaktadır. Yeni türlerin eklenmesi, yani polietilenin iyileştirilmesi ile oyuncaktan, ev eşyasına bidonlardan poşetlere kadar pek çok alanda kullanılmaktadır.

Polietilenlerin dayanıklılık, sağlamlılık, kolay islenebilme ve dielektrik özelliklerinin üstünlüğü ile günümüzde oldukça yaygın olarak kullanılmaktadır.

1. ETİLEN

Etilen; Alçak ve Yüksek Yoğunluk Polietilen Vinilklorür Monom er ve Etilen Oksit eldeki için, Saf Propilen; Polipropilen fabrikasında, Normal Propilen; Akrilonitril fabrikasında, Ham Benzin ve Hidrojen Aromatikler fabrikasında kullanılmaktadır.Aromatik Yağ Karbon Siyahı eldeki için, Bütan ve Bütadien karısımı olan C

2. POLİETİLEN’ NİN TARİHÇESİ

Etilenin polimerleştirilme tepkimesi, 1930 yılında tesadüfen 7ngiliz kimyasal ürünler şirketi Imperial Chemical Industries’ de bulundu. Ama başlangıçta, yaklaşık 2000 barlık çok yüksek basınçlar altında gerçekleştirilen bu tepkimenin teknolojisini kolayca uygulanabilir hale getirmek için yıllar gerekti. Çok geçmeden mekanik ve elektriksel özelliklerinin farkına varılan polietilen, birçok farklı uygulamada kullanılmaya başladı. Daha sonra, 1950’ li yıllarda kimyacı K. Ziegler, düşük basınç altında polimerleştirme tepkimesini geliştirdi. Bu yöntem 1970’ lif yıllarda polietilenin bütün çeşitlerine yaygınlaştırıldı; böylece o tarihten itibaren polietilen, dünya çapında en çok kullanılan plastik madde haline geldi. Çöp torbasından elektriksel yalıtıma kadar uzanan çok çeşitli alanlarda kullanıldı.

3. POLİETİLEN MALZEMELER

Polietilen beyazca, yarı geçirgen, yumuşatılabilen ve oldukça dayanıklı bir polimerdir. Piyasada satılan özellikle şeffaf olanıdır. Şeffaflık derecesiyle yoğunluğun ilgisi vardır. Yoğunluk arttıkça şeffaflık artar. Piyasada yoğunluklarına göre polietilenler; alçak yoğunluklu polietilen (AYPE), lineer alçak yoğunluklu polietilen (LAYPE), orta yoğunluklu polietilen (OYPE) ve yüksek yoğunluklu polietilen (YYPE). Her dört polietilen türünde de monomer etilen olup, polimer molekülünün değişik yapıları ortaya çıkmaktadır. Polimer molekülünü meydana getiren zincir seklindeki makro moleküllerin değişik dallanma durumları polietilenin çeşitliliğini sağlar. Örneğin LAYPE’ de dallanma yok denecek kadar az, YYPE’ de biraz fazla, OYPE’ de daha fazladır. AYPE’ de dallanma maksimum düzeydedir. Dallanmanın uzun veya kısa olusu polimer özelliklerini etkiler.Yoğunluk dolayısıyla şeffaflık arttıkça sertlik ve mukavemet artar, yumuşama sıcaklığı da yükselir. Bu türlere gaz ve sıvı maddelerin tesir etmesi de zorlaşır.

Polietilen bir katılma polimeridir. Etilen, polimerlesmeyi başlatıcı bir katalizör ile polimerleşir ve polietilen oluşur. nCH

4. POLİETİLEN MALZEMELERİN TEMEL ÖZELLİKLERİ

• Hafiflik ve Kullanım Kolaylığı

Malzemelerin tasıma kolaylığı ve döşeme esnasındaki hareket kabiliyeti, alternatif malzemelere göre oldukça önemli bir avantaj sağlar.

• Esneklik

Yer hareketlerine dayanım, özellikle deprem kuşağındaki alt yapı çalışmalarında dikkate alınması gereken en önemli husustur. 1999 senesinde ülkemizde yasananbüyük deprem sonrasında "doğalgaz servis hatları" dışında kalan tüm alt yapı hatları zarar görmüştü. Bunun nedeni sadece doğalgaz hatlarının Polietilen borular ile döşenmiş olmasıydı. Deprem sonrasında yapılan yenileme çalışmalarında 7ller Bankası bu bölgedeki tüm içme suyu alt yapısını Polietilen PE100 borular kullanarak yapmıştır.

• İyi Kaynak Özellikleri

Özellikle elektro füzyon veya alın kaynağı ile birleştirilmiş PE boru hatlarında kaynak noktaları son derecece sağlam olup, yapılan testler kaynak noktalarının eksiz boru bölgelerinden daha sağlam bir yapıda olduğunu göstermektedir.

• Dayanıklılık

• Sağlamlık

• Basınç altında ek yerlerinden çıkma ve kopma olmaması

Mükemmel kaynak özellikleri ek yerlerinden çıkma/kopma veya sızıntı olmasını engellemektedir.

• Çatlamaya Karsı Direnç

• Sıfır Korozyon

• Kimyasal Etkilere Karsı Direnç

PE malzemelerin farklı kimyasallara karsı dayanımları "Proje ve Teknik -Kimyasallar" bölümünde verilmektedir.

• düşük sürtünme

5. POLİETİLENLERİ İYİLEŞTİRMEK İÇİN KATILAN MADDELER

Polietilenlerin özelliklerini İYİLEŞTİRMEK, bazı etkilere karsı direncini ve dayanımını artırmak için eritilerek basınç altında karıştırma yöntemiyle aşağıdaki kimyasal maddeler polietilenlerin içine katılır.

5.1. OKSİTLENMEYİ ÖNLEYİCİLER

Bu tür kimyasal maddeler genellikle fentlik yapıda olup primary ve secondary antioksidant olarak iki gruba ayrılır. Primary oksidantlar diğer bir deyişle radikal söndürücüler polietilenin ısıtılması sırasında makromolekülün parçalanması ile ortaya çıkan radikalleri etkisiz hale getirir, çoğalmasını önler. Secondary antioksidanlar ise polietilenin oksijenli ortamda bozunması ile oluşan hidrosiperoksitleri parçalar ve bozunmanın devamını engeller. Bu iki oksidantlar polietilenin uzun süre bozunmaya karsı dirençli olmasını sağlar.

5.2. UV KARARLILIK SAĞLAYICILAR

Güneş ışığının ültraviyole kesimi her türlü karbon – karbon bağına etki eder ve bu bağı zaman içinde zayıflatarak kırılmasına neden olur. Bunun önüne geçmek için polietilenin içine günesin bu etkisini polietilenden önce soğuran kimyasal maddeler konur. Bu kimyasal maddeler; UV absorber ve UV quencher olmak üzere iki grup altında toplanır.

5.3. KAYDIRICI VE BLOKLAŞMAYI ÖNLEYİCİLER

Kaydırıcı olarak yağ asitlerinin aminleri, BLOKLAŞMAYI önleyici olarak da %90’ ın üzerinde silisyum dioksit ihtiva eden inorganik bileşikler kullanılır. BLOKLAŞMAYI önleyici katkılarda tane büyüklüğü dağılımı ve maddenin yağ absorpsiyonu çok önemlidir. Kaydırıcı ile birlikte kullanılan bloklaşma önleyicilerde yağ absorbsiyonu önemlidir.

6. POLİETİLEN İSLEME TEKNİKLERİ

Polietilenler plastik isleme sektöründe en yaygın isleme sahası olan malzemelerdir.

• Film ekstrüzyonu

• Ekstrüzyonla kağıt metal kaplama

• Şişirme ile kalıplama

• Rotasyon el kalıplama

• Enjeksiyonla kalıplama

• Toz kaplamalar

• Tel ve kablo imali

• Boru hortum imalatı

• Köpük film imalatı

• Masterbeç imalatı

7. ALÇAK YOĞUNLUKLU POLİETİLEN

7.1. ÜRETİM TEKNOLOJİSİ

AYPE bir otoklavda veya boru tipi tubular reaktörde, etilen monomerlerinin 1200 – 3000 atm basınç ve 130 - 350°C sıcaklıkta, organik peroksitlerin yardımıyla polimerizasyonundan elde edilir. Yüksek basınç proseslerinde katalizör olarak O

7.2. AYPE’ NİN ÜRETİM PROSESİ

AYPE üretmek için yüksek basınçlı proses ve oksijen ve peroksit kabalisti kullanılır. Sekil 1’ de AYPE’ nin üretim prosesi görülmektedir. Polietilen üretmek için gerekli saf etilen,pompalar yardımıyla 150 MPa’ a basılarak 190ºC’ deki tubuler reaktöre beslenir. Aynı anda reaktöre katalist eklemesi de yapılır. Reaksiyon bir çözelti içinde gerçekleşir. Buradan çıkan karışım yüksek basınç separatörüne gelir. Burada reaksiyona uğramış etilen polietilen olarak düşük basınç separatörüne yollanırken, reaksiyona girmeyen etilen sisteme geri beslenmek üzere önce kompresöre, oradan tubuler reaktöre yollanır. düşük basınç separatöründen çıkan ürün ekstrudera beslenir. Ekstruderda kalıplanan ürün, önce soğutulur sonra kurutular.

7.3. AYPE’ NİN ÖZELLİKLERİ

Özgül Agırlık 0,91 – 0,93 g/cm

 

Elastiklik Modülü 0,1 – 0,26

Erime Noktası °C 98 – 120

Dayanma Gücü 4,1 – 1,6

7.4. KULLANIM ALANLARI

AYPE;

• Agır hizmet torbası

• Sera örtüsü

• Ambalaj filmi

• Kablo kılıflama

• Ev eşyası, oyuncak

• Boru, hortum, tüp, sise, kumaş ve metal kaplamaları, rotasyonlar, kalıplama maddeleri

• Her çeşit stres ve sirink film

• Poşet, peçete için naylon torba alanlarında kullanılır.

7.5. AYPE TÜKETİM

Ekstrüzyon kaplama ve film uygulamalarında AYPE ile LAYPE’ nin karıştırılarak kullanılmasıyla daha iyi islenebilirlik elde edilmesinden dolayı AYPE’ ye olan talepte bir miktar azalma gözlenmiştir.

Ekstrüzyon kaplama, şişirme ile kaplama, tel ve kablo kaplama gibi geleneksel pazarda kullanılan AYPE, üstün proses kabiliyeti ve berraklığı sayesinde LAYPE’ nin bu pazara daha çok girmesine direnmektedir. Nihai ürün tüketim dağılımı Sekil 3’ te veri mistir.

AYPE için esas kullanım alanı, film uygulaması ile yaklaşık % 74’lük bir tüketim oluşturan paketleme sektörüdür. Polietilen film sektöründeki talep büyüyerek devam edecek ve LAYPE’ nin AYPE ile karıştırılarak kullanılması bu büyümeyi destekleyecektir.

8. YÜKSEK YOĞUNLUKLU POLİETİLEN

Yüksek yoğunluklu polietilen kopmaya, kırılmaya ve parçalanmaya karsı direncini kaybettiği gibi bunların kalıplanması için yüksek sıcaklığa ve basınca ihtiyaç vardır.

8.1. ÜRETİM TEKNOLOJİSİ

YYPE, titanyum tetraklorür katalizör (Ziegler – Nata katalizörü) ve organometalik katalizörler yardımıyla 10 – 20 atm basınç ve 70 – 80 °C sıcaklıkta etilenin polimerizasyonu sonucu elde edilir. YYPE, düşük basınçla çalışan proseslerde üretilmektedir. YYPE, dallanmış yapıya sahiptir.

8.2. YYPE’ NİN ÜRETİM PROSESİ

YYPE üretmek için düşük basınçlı prosesler ve besleme olarak etilenle birlikte komonomer beslemesi yapılmalıdır. Sekil 2’ de düşük basınçlı proseste YYPE üretimi görülmektedir. Union Carbide’ s Unipol prosesi kullanılır. Saf etilen ile 1 – butane komonomeri sıvı yataklı reaktöre beslenir. Aynı anda reaktöre katalist de beslenir. Reaktörde 100ºC’ de basınç 690 kPa’ dan 2100 kPa’ çıkar. Sıvı yataklı reaktörde reaksiyona girmeyen etilen önce kompresörle basılıp daha sonra uygun sıcaklığa gelmesi için soğutulup sisteme tekrar beslenir. Reaksiyona giren kısım reaktörden gaz olarak çıkan ürün gaz – lock odasına kurutulmak üzere alınır. Buradan çıkan ürün separatöre gelir. Separatörde, ürün nitrojen ile temizlenerek depolanmaya alınır. Reaktör içinde polimerin kalma süresi ortalama 3 – 5 sattır.

8.3. YYPE’ NİN ÖZELLİKLERİ

Özgül Ağırlık 0,94 – 0,97 g/cm

 

Elastiklik Modülü 0,41 – 1,24

Erime Noktası °C 127 – 137

Dayanma Gücü 21 – 38

8.4. KULLANIM ALANLARI

YYPE;

• Ev eşyası, oyuncak

• Ambalaj filmi

• Boru (sert boru, deterjan ve kozmetik şişesi (şeffaf olmayan)), su, gaz bidona

• Levha, kağıt, kumaş ve metal kaplamada rotasyonel kalıplama maddeleri

• Atlet tipi poşet, Plastik poşetler, Laminasyon, File çuval

• Basınçlı su borusu, gaz ve kanalizasyon

• Su dağıtımı, kanalizasyon,sulama dağıtım şebeke boruları alanlarında kullanılır.

8.5. YYPE TÜKETİM

YYPE teknolojisinde yer alan en büyük gelişme muti-stage reaktörler kullanılarak üretilen dayanıklılığı ve islenirliği geliştiren bimodal HMW YYPE’ de olmuştur. Bu türler film ve şişirmelik uygulamalarda AYPE ve LAYPE pazarından pay almakta oldukça başarılı olmuştur. Nihai ürün kullanım dağılımı Sekil 4’ te verilmiştir. 5 litreden az kapasiteli sise imalatıyla şişirmelik uygulamalar YYPE talebinin yaklaşık %40’ lık kısmına sahiptir. Bu kaplar deterjan, sıvı sabun, şampuan, süt şişesi gibi geniş kullanım yelpazesine sahiptir. Geri dönüşümlü polietilenlerin bazı alanlarda kullanımının artması 1. Kalite YYPE’ nin kullanımını sınırlamasına rağmen süt ve meyve suyu için YYPE kullanmanın büyümeye devam edeceği tahmin edilmektedir.

9. LİNEER ALÇAK YOĞUNLUKLU POLİETİLEN

9.1. ÜRETİM TEKNOLOJİSİ

Son zamanlarda alçak basınçlı otoklav ve tubular reaktörler kullanmak suretiyle LAYPE üretimi yapılmaktadır. LAYPE’ nin özellikleri AYPE’ den oldukça farklıdır. Gerilime dayanımı ve uzama AYPE’ ne nazaran daha yüksek, darbe dayanımı daha iyidir. Isı direnci 15ºC’ daha yüksek, islenmesi daha zordur. Buna karşılık berraklık, parlaklık daha kötü olup, erime gücü daha düşüktür. LAYPE üretimi gaz fazı prosesinde gerçekleştirilir, elde edilen reçine, etilen – alfaolefin kopolimeri olup, lineer bir yapıya sahiptir. LAYPE’ de dallanma olmadığından isleme esasında makine çekim yönündeki uzaması çok fazladır. Çekim yönünde dik uzaması ise düşüktür. LAYPE otken, hekzen ve büten ile kopolimer olarak da üretilir.

9.2. İSLEME TEKNOLOJİLERİ

LAYPE isleme teknikleri ile AYPE isleme teknikleri aynı olup, LAYPE yalnız basına islenmek istenildiğinde konvansiyonel AYPE ekstruderlarında islenmez. Bu yüzden AYPE içinde LAYPE % 40’ avaran oranlarda karıştırılarak kullanılır. LAYPE’ ni tek basına islemek için bu ürüne göre dizayn edilmiş yeni ekstruder kullanmak gerekir.

9.3. KULLANIM ALANLARI

• Film ekstruzyon ürürleri; çöp torbaları, zirai amaçlı ağır hizmet torbaları, branda, market torbaları, tekstil ürün ambalajları

• Enjeksiyon kalıplama ürünleri; ev eşyaları, oyuncak imali, kırtasiye malzemeleri, elektronik sanayi bağlantı parçaları

• Döner kalıplama ürünleri; çeşitli büyüklükte konteynırlar, çöp bidonları, portatif kulübeler

• Şişirme ile kalıplama ürünleri; çeşitli hacimde şişeler, su kaparlı

9.4. LAYPE TÜKETİM

Doğu Avrupa’ da LAYPE ihtiyacı son yıllarda hızlı bir artış göstermektedir. Özellikle AYPE’ la kullanılması ve bazı durumlarında LAYPE’ nin tercih edilmesi tüketimi artırmıştır.

LAYPE’ nin yaklaşık %76’ sı paketleme-ambalaj uygulamalarında tüketilmektedir.

LAYPE,film uygulamalarında hızlı bir şekilde AYPE’ nin yerini almaktadır. LAYPE’ nin

üstün esneklik özellikleri, düşük sıcaklıklarda ısı etkisine karsı dayanıklılık, yüksek saflık

derecesi, berraklık ve üstün optik geçirgenliği ile oldukça fazla ilgi görmektedir.

Bizden Haberler Diğer Başlıklarımız

Toplam Bizden Haberler: 4

Yukarı